📜
Awesome Papers
  • Introduction
  • Paper List
    • Systems for ML
      • Data Processing
      • Deep Learning Training
      • Resource Scheduler
      • Model Serving
      • Large Language Model (LLM)
      • Diffusion Models
      • Deep Learning Recommendation Model (DLRM)
      • Mixture of Experts (MoE)
      • Hyper-Parameter Tuning (HPO)
      • Reinforcement Learning (RL)
      • Deep Learning Compiler
      • Deep Learning Framework
      • Cloud-Edge Collaboration
    • ML for Systems
    • Artificial Intelligence (AI)
      • Diffusion Models
      • Language Models
      • Deep Learning Recommendation Model (DLRM)
    • Hardware Virtualization
      • GPU Sharing
    • Resource Disaggregation
      • GPU Disaggregation
      • Memory Disaggregation
    • Resource Fragmentation
    • Cloud Computing
      • Sky Computing
      • Serverless Computing
      • Spot Instances
    • Remote Direct Memory Access (RDMA)
    • Research Skills
    • Miscellaneous
  • Reading Notes
    • Conference
      • ICML 2025
      • ATC 2025
      • OSDI 2025
      • HotOS 2025
      • MLSys 2025
      • NSDI 2025
      • ASPLOS 2025
      • EuroSys 2025
      • HPCA 2025
      • PPoPP 2025
      • NeurIPS 2024
      • SoCC 2024
      • HotNets 2024
      • SC 2024
      • SOSP 2024
      • VLDB 2024
      • SIGCOMM 2024
      • ICML 2024
      • ATC 2024
      • OSDI 2024
      • ISCA 2024
      • CVPR 2024
      • MLSys 2024
      • ASPLOS 2024
        • SpotServe: Serving generative large language models on preemptible instances
      • EuroSys 2024
        • Orion: Interference-aware, fine-grained GPU sharing for ML applications
      • NSDI 2024
      • NeurIPS 2023
      • SC 2023
        • Interference-aware multiplexing for deep learning in GPU clusters: A middleware approach
      • SoCC 2023
      • SOSP 2023
        • UGache: A unified GPU cache for embedding-based deep learning
      • SIGCOMM 2023
      • HotChips 2023
      • ICML 2023
      • ATC 2023
        • Accelerating Distributed MoE Training and Inference with Lina
        • SmartMoE: Efficiently Training Sparsely-Activated Models ...
        • Beware of Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent
      • OSDI 2023
      • HotOS 2023
      • SIGMOD 2023
      • ISCA 2023
      • MLSys 2023
      • EuroSys 2023
      • NSDI 2023
        • Shepherd: Serving DNNs in the wild
        • Understanding RDMA microarchitecture resources for performance isolation
        • Skyplane: Optimizing transfer cost and throughput using cloud-aware overlays
        • Shockwave: Fair and efficient cluster scheduling for dynamic adaptation in machine learning
      • ASPLOS 2023
        • TPP: Transparent page placement for CXL-enabled tiered-memory
        • EVStore: Storage and caching capabilities for scaling embedding tables in deep recommendation system
        • Lucid: A non-intrusive, scalable and interpretable scheduler for deep learning training jobs
      • SC 2022
      • SoCC 2022
        • ESCHER: Expressive scheduling with ephemeral resources
        • Serving unseen deep learning model with near-optimal configurations: A fast adaptive search approach
      • SIGCOMM 2022
        • Multi-resource interleaving for deep learning training
      • ATC 2022
        • PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training
        • Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual Memory
        • Whale: Efficient Giant Model Training over Heterogeneous GPUs
        • DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient Processing of DNN Service...
        • Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing
        • SOTER: Guarding Black-box Inference for General Neural Networks at the Edge
        • Direct access, high-performance memory disaggregation with DirectCXL
      • OSDI 2022
        • Orca: A distributed serving system for transformer-based generative models
        • Microsecond-scale preemption for concurrent GPU-accelerated DNN inferences
        • Looking beyond GPUs for DNN scheduling on multi-tenant clusters
      • IPDPS 2022
        • DGSF: Disaggregated GPUs for serverless functions
      • EuroSys 2022
        • Slashing the disaggregation tax in heterogeneous data centers with FractOS
      • NSDI 2022
      • SoCC 2021
      • ATC 2021
        • Zico: Efficient GPU memory sharing for concurrent DNN training
      • OSDI 2021
        • Pollux: Co-adaptive cluster scheduling for goodput-optimized deep learning
      • SOSP 2021
        • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
      • EuroSys 2021
        • Take it to the limit: Peak prediction-driven resource overcommitment in datacenters
      • HotOS 2021
        • From cloud computing to sky computing
      • NSDI 2021
      • OSDI 2020
        • A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters
        • HiveD: Sharing a GPU cluster for deep learning with guarantees
      • ATC 2020
        • Serverless in the wild: Characterizing and optimizing the serverless workload
      • EuroSys 2020
      • ASPLOS 2020
      • MLSys 2020
      • SoCC 2020
        • Elastic Parameter Server Load Distribution in Deep Learning Clusters
      • HPDC 2020
        • KubeShare: A framework to manage GPUs as first-class and shared resources in container cloud
      • CLUSTER 2019
      • EuroSys 2019
      • NSDI 2019
      • IWQoS 2019
        • Who limits the resource efficiency of my datacenter: An analysis of Alibaba datacenter traces
      • SIGCOMM 2018
        • Revisiting network support for RDMA
      • OSDI 2018
        • Ray: A distributed framework for emerging AI applications
      • EuroSys 2018
        • Medea: Scheduling of long running applications in shared production clusters
      • ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018
        • GaiaGPU: Sharing GPUs in container clouds
      • SoCC 2017
        • SLAQ: Quality-driven scheduling for distributed machine learning
      • ASPLOS 2017
        • Neurosurgeon: Collaborative intelligence between the cloud and mobile edge
      • NSDI 2017
        • Clipper: A low-latency online prediction serving system
      • CLUSTER 2014
        • Evaluating job packing in warehouse-scale computing
    • Journal
      • IEEE Transactions on Cloud Computing
        • 2021
          • Gemini: Enabling multi-tenant GPU sharing based on kernel burst estimation
      • ACM Computing Surveys
        • 2017
          • GPU virtualization and scheduling methods: A comprehensive survey
      • ACM SIGCOMM Computer Communication Review (CCR)
        • 2021
          • Data-driven Networking Research: models for academic collaboration with industry
        • 2007
          • How to Read a Paper
      • Communications of the ACM
        • 2015
          • Why Google stores billions of lines of code in a single repository
    • Miscellaneous
      • arXiv
        • 2024
          • Efficiently programming large language models using SGLang
        • 2023
          • HexGen: Generative inference of foundation model over heterogeneous decentralized environment
          • High-throughput generative inference of large language models with a single GPU
        • 2022
          • DisaggRec: Architecting disaggregated systems for large-scale personalized recommendation
          • A case for disaggregation of ML data processing
          • Singularity: Planet-scale, preemptive and elastic scheduling of AI workloads
          • Aryl: An elastic cluster scheduler for deep learning
        • 2016
          • Wide & deep learning for recommender systems
          • Training deep nets with sublinear memory cost
      • MSR Technical Report
        • 2011
          • Heuristics for vector bin packing
  • About Myself
    • Academic Profile
    • Personal Blog (in Chinese)
Powered by GitBook
On this page
  • Meta Info
  • Understanding the paper
  • TL;DR
  • Background
  • Limitation of prior works
  • Characteristics of Embedding Access
  • System design
  • Implementation
  • Evaluation

Was this helpful?

Edit on GitHub
  1. Reading Notes
  2. Conference
  3. SOSP 2023

UGache: A unified GPU cache for embedding-based deep learning

#DLRM_inference #GPU_embedding_cache

Last updated 1 year ago

Was this helpful?

Meta Info

Presented in .

Authors: Xiaoniu Song, Yiwen Zhang, Rong Chen, Haibo Chen (SJTU)

Understanding the paper

TL;DR

  • UGache — A unified cache across multiple GPUs

  • Exploit cross-GPU interconnects (e.g., NVLink, NVSwitch)

    • Provide an optimal data placement with a unified abstraction for various GPU interconnects and bandwidths

Background

  • Performance bottleneck

    • Fetch embedding entries

      • Example: GNN training (31.3 ms)

        • Embedding extraction: 20.7 ms

        • Fetch missing data from host memory: 17.9 ms (out of 20.7 ms)

    • Memory limitation in a single GPU

Limitation of prior works

  • Single GPU embedding cache

    • Only let each GPU cache the hottest embeddings independently

    • The hit rate is limited due to the single GPU’s memory capacity, and the time of embedding extraction still dominates the entire model

  • Multi-GPU embedding cache

    • Fail to address challenges related to cache policy and extraction mechanism

    • Replication cache

      • Directly port single-GPU cache to multi-GPU platform → Each GPU caches the hottest entries independently

      • Drawbacks

        • Each GPU covers similar requests

        • Waste bandwidth across GPUs

    • Partition cache

      • Cache as many individual entries as possible and serve the majority of accesses through fast GPU interconnects

      • Drawbacks

        • Increasing cache capacities using a partition policy does not lead to proportional increases in hit rates

Characteristics of Embedding Access

  • Read-only

    • Inference

    • Pre-training → The embedding table is trained beforehand and distributed across different downstream workloads

  • Batched access

    • Only access a subset of embedding entries using batched sparse inputs as keys

  • Skewed hotness

    • Power-law distribution

  • Predictable pattern workload

    • The skewness of accessing embeddings is predictable and stable

System design

  • Extractor

    • A factored extraction mechanism to extract embedding entries from multiple sources

    • Statically dedicate GPU cores to access different sources

  • Solver

    • Find a balance between caching more distinct entries to improve global hit rate and caching more replicas to improve local hit rate

    • Define a hotness metric to measure the access frequency for each entry

    • Profile hardware platform’s information to estimate embedding extraction time

    • Utilize Mixed-Integer Linear Programming to solve a cache policy to minimize the extraction time

Implementation

  • Integrated into TensorFlow and PyTorch.

Evaluation

  • Two representative applications: DLRM inference, GNN training

SOSP 2023