📜
Awesome Papers
  • Introduction
  • Paper List
    • Systems for ML
      • Data Processing
      • Deep Learning Training
      • Resource Scheduler
      • Model Serving
      • Large Language Model (LLM)
      • Diffusion Models
      • Deep Learning Recommendation Model (DLRM)
      • Mixture of Experts (MoE)
      • Hyper-Parameter Tuning (HPO)
      • Reinforcement Learning (RL)
      • Deep Learning Compiler
      • Deep Learning Framework
      • Cloud-Edge Collaboration
    • ML for Systems
    • Artificial Intelligence (AI)
      • Diffusion Models
      • Language Models
      • Deep Learning Recommendation Model (DLRM)
    • Hardware Virtualization
      • GPU Sharing
    • Resource Disaggregation
      • GPU Disaggregation
      • Memory Disaggregation
    • Resource Fragmentation
    • Cloud Computing
      • Sky Computing
      • Serverless Computing
      • Spot Instances
    • Remote Direct Memory Access (RDMA)
    • Research Skills
    • Miscellaneous
  • Reading Notes
    • Conference
      • ICML 2025
      • ATC 2025
      • OSDI 2025
      • HotOS 2025
      • MLSys 2025
      • NSDI 2025
      • ASPLOS 2025
      • EuroSys 2025
      • HPCA 2025
      • PPoPP 2025
      • NeurIPS 2024
      • SoCC 2024
      • HotNets 2024
      • SC 2024
      • SOSP 2024
      • VLDB 2024
      • SIGCOMM 2024
      • ICML 2024
      • ATC 2024
      • OSDI 2024
      • ISCA 2024
      • CVPR 2024
      • MLSys 2024
      • ASPLOS 2024
        • SpotServe: Serving generative large language models on preemptible instances
      • EuroSys 2024
        • Orion: Interference-aware, fine-grained GPU sharing for ML applications
      • NSDI 2024
      • NeurIPS 2023
      • SC 2023
        • Interference-aware multiplexing for deep learning in GPU clusters: A middleware approach
      • SoCC 2023
      • SOSP 2023
        • UGache: A unified GPU cache for embedding-based deep learning
      • SIGCOMM 2023
      • HotChips 2023
      • ICML 2023
      • ATC 2023
        • Accelerating Distributed MoE Training and Inference with Lina
        • SmartMoE: Efficiently Training Sparsely-Activated Models ...
        • Beware of Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent
      • OSDI 2023
      • HotOS 2023
      • SIGMOD 2023
      • ISCA 2023
      • MLSys 2023
      • EuroSys 2023
      • NSDI 2023
        • Shepherd: Serving DNNs in the wild
        • Understanding RDMA microarchitecture resources for performance isolation
        • Skyplane: Optimizing transfer cost and throughput using cloud-aware overlays
        • Shockwave: Fair and efficient cluster scheduling for dynamic adaptation in machine learning
      • ASPLOS 2023
        • TPP: Transparent page placement for CXL-enabled tiered-memory
        • EVStore: Storage and caching capabilities for scaling embedding tables in deep recommendation system
        • Lucid: A non-intrusive, scalable and interpretable scheduler for deep learning training jobs
      • SC 2022
      • SoCC 2022
        • ESCHER: Expressive scheduling with ephemeral resources
        • Serving unseen deep learning model with near-optimal configurations: A fast adaptive search approach
      • SIGCOMM 2022
        • Multi-resource interleaving for deep learning training
      • ATC 2022
        • PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training
        • Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual Memory
        • Whale: Efficient Giant Model Training over Heterogeneous GPUs
        • DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient Processing of DNN Service...
        • Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing
        • SOTER: Guarding Black-box Inference for General Neural Networks at the Edge
        • Direct access, high-performance memory disaggregation with DirectCXL
      • OSDI 2022
        • Orca: A distributed serving system for transformer-based generative models
        • Microsecond-scale preemption for concurrent GPU-accelerated DNN inferences
        • Looking beyond GPUs for DNN scheduling on multi-tenant clusters
      • IPDPS 2022
        • DGSF: Disaggregated GPUs for serverless functions
      • EuroSys 2022
        • Slashing the disaggregation tax in heterogeneous data centers with FractOS
      • NSDI 2022
      • SoCC 2021
      • ATC 2021
        • Zico: Efficient GPU memory sharing for concurrent DNN training
      • OSDI 2021
        • Pollux: Co-adaptive cluster scheduling for goodput-optimized deep learning
      • SOSP 2021
        • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
      • EuroSys 2021
        • Take it to the limit: Peak prediction-driven resource overcommitment in datacenters
      • HotOS 2021
        • From cloud computing to sky computing
      • NSDI 2021
      • OSDI 2020
        • A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters
        • HiveD: Sharing a GPU cluster for deep learning with guarantees
      • ATC 2020
        • Serverless in the wild: Characterizing and optimizing the serverless workload
      • EuroSys 2020
      • ASPLOS 2020
      • MLSys 2020
      • SoCC 2020
        • Elastic Parameter Server Load Distribution in Deep Learning Clusters
      • HPDC 2020
        • KubeShare: A framework to manage GPUs as first-class and shared resources in container cloud
      • CLUSTER 2019
      • EuroSys 2019
      • NSDI 2019
      • IWQoS 2019
        • Who limits the resource efficiency of my datacenter: An analysis of Alibaba datacenter traces
      • SIGCOMM 2018
        • Revisiting network support for RDMA
      • OSDI 2018
        • Ray: A distributed framework for emerging AI applications
      • EuroSys 2018
        • Medea: Scheduling of long running applications in shared production clusters
      • ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018
        • GaiaGPU: Sharing GPUs in container clouds
      • SoCC 2017
        • SLAQ: Quality-driven scheduling for distributed machine learning
      • ASPLOS 2017
        • Neurosurgeon: Collaborative intelligence between the cloud and mobile edge
      • NSDI 2017
        • Clipper: A low-latency online prediction serving system
      • CLUSTER 2014
        • Evaluating job packing in warehouse-scale computing
    • Journal
      • IEEE Transactions on Cloud Computing
        • 2021
          • Gemini: Enabling multi-tenant GPU sharing based on kernel burst estimation
      • ACM Computing Surveys
        • 2017
          • GPU virtualization and scheduling methods: A comprehensive survey
      • ACM SIGCOMM Computer Communication Review (CCR)
        • 2021
          • Data-driven Networking Research: models for academic collaboration with industry
        • 2007
          • How to Read a Paper
      • Communications of the ACM
        • 2015
          • Why Google stores billions of lines of code in a single repository
    • Miscellaneous
      • arXiv
        • 2024
          • Efficiently programming large language models using SGLang
        • 2023
          • HexGen: Generative inference of foundation model over heterogeneous decentralized environment
          • High-throughput generative inference of large language models with a single GPU
        • 2022
          • DisaggRec: Architecting disaggregated systems for large-scale personalized recommendation
          • A case for disaggregation of ML data processing
          • Singularity: Planet-scale, preemptive and elastic scheduling of AI workloads
          • Aryl: An elastic cluster scheduler for deep learning
        • 2016
          • Wide & deep learning for recommender systems
          • Training deep nets with sublinear memory cost
      • MSR Technical Report
        • 2011
          • Heuristics for vector bin packing
  • About Myself
    • Academic Profile
    • Personal Blog (in Chinese)
Powered by GitBook
On this page
  • Metadata
  • Understanding the paper
  • Key motivation
  • Limitation of existing solutions
  • Strong points
  • Weak points
  • Implementation
  • Evaluation
  • Questions

Was this helpful?

Edit on GitHub
  1. Reading Notes
  2. Conference
  3. OSDI 2020

HiveD: Sharing a GPU cluster for deep learning with guarantees

Last updated 1 year ago

Was this helpful?

Metadata

Presented in . [ | | | ]

Authors: Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou, Mao Yang, Francis C.M. Lau, Yuqi Wang, Yifan Xiong, Bin Wang

Understanding the paper

Key motivation

The authors observe that some tenants may experience worse queueing delay in multi-tenant GPU clusters than a private cluster with allocated shares of GPUs (i.e., quota).

The main question is that quota cannot guarantee the a desirable GPU affinity for each deep learning jobs. Multi-GPU jobs have to wait in a queue or run at a relaxed affinity.

To ensure sharing safety, HiveD reserves GPU affinity explicitly.

Limitation of existing solutions

Currently, there is no framework to consider sharing anomaly in multi-tenant GPU clusters.

Strong points

  • HiveD is the first framework to address sharing anomaly in multi-tenant GPU clusters. It defines a hierarchical cell structure, and each cell is a set of GPUs at a certain level of affinity. Each tenant reserves resources via a Virtual Private Cluster (VC), which has multi-level cells, as shown in the figure.

    • Level-1 cell: GPU

    • Level-2 cell: PCI-e switch (2 GPUs)

    • Level-3 cell: CPU socket (4 GPUs)

    • Level-4 cell: Node (8 GPUs)

    • Level-5 cell: Rack (multi-node)

  • HiveD separates resource reservation and resource allocation (which is determined by schedulers). Therefore, it can easily incorporate any state-of-the-art deep learning scheduler (e.g., YARN-CS, Gandiva, Tiresias), which means that each VC can apply a diverse scheduler to achieve different objectives (e.g., cluster utilization, job completion time, fairness).

  • HiveD can be extended to other affinity-aware resources (e.g., NUMA-aware resources like affinitized GPUs and CPU cores under the same socket).

Weak points

VC assignment

As for me, it's hard to determine the VC assignment to each tenant, specially the cell structures of GPUs. In the paper, Sec. 6 mentions this as a business process. Systems have to consider many factors, including overall capacity, tenant demands, composition of tenant workload, workload variation over time, business priority, budget constraints. But HiveD leaves the difficult problem to users.

Implementation

HiveD is implemented in 7,700+ lines of Go codes. It is implemented as a scheduler extender, a standalone process that works in tandem with the Kubernetes default scheduler.

HiveD is deployed as a Kubernetes StatefulSet to ensure a single running instance. And it partitions and stores the cell binding decision for each pod in its "pod annotation".

Evaluation

  1. Experiments on a 96-GPU cluster on a public cloud

    • Deployed on Azure.

    • The cluster consists of 24 VMs, each with 4 NVIDIA K80 GPUs.

  2. Trace-driven simulations on a production workload (i.e., Philly trace).

Choose three types of deep learning models: CV, NLP, and Speech (WaveNet, DeepSpeech).

Questions

  • How to define if a tenant suffers from sharing anomaly in the multi-tenant cluster?

    • In the trace, the GPU affinity requirements of most jobs are hard. Therefore, the authors use queueing delay to evaluate the cluster sharing anomaly. They also evaluate the JCT when job's affinity requirement is soft.

HiveD has been open-sourced and integrated in .

OSDI 2020
Paper
Slides
Video
Code
OpenPAI
System architecture: a two-layer design