πŸ“œ
Awesome Papers
  • Introduction
  • Paper List
    • Systems for ML
      • Data Processing
      • Deep Learning Training
      • Resource Scheduler
      • Model Serving
      • Large Language Model (LLM)
      • Diffusion Models
      • Deep Learning Recommendation Model (DLRM)
      • Mixture of Experts (MoE)
      • Hyper-Parameter Tuning (HPO)
      • Reinforcement Learning (RL)
      • Deep Learning Compiler
      • Deep Learning Framework
      • Cloud-Edge Collaboration
    • ML for Systems
    • Artificial Intelligence (AI)
      • Diffusion Models
      • Language Models
      • Deep Learning Recommendation Model (DLRM)
    • Hardware Virtualization
      • GPU Sharing
    • Resource Disaggregation
      • GPU Disaggregation
      • Memory Disaggregation
    • Resource Fragmentation
    • Cloud Computing
      • Sky Computing
      • Serverless Computing
      • Spot Instances
    • Remote Direct Memory Access (RDMA)
    • Research Skills
    • Miscellaneous
  • Reading Notes
    • Conference
      • ICML 2025
      • ATC 2025
      • OSDI 2025
      • HotOS 2025
      • MLSys 2025
      • NSDI 2025
      • ASPLOS 2025
      • EuroSys 2025
      • HPCA 2025
      • PPoPP 2025
      • NeurIPS 2024
      • SoCC 2024
      • HotNets 2024
      • SC 2024
      • SOSP 2024
      • VLDB 2024
      • SIGCOMM 2024
      • ICML 2024
      • ATC 2024
      • OSDI 2024
      • ISCA 2024
      • CVPR 2024
      • MLSys 2024
      • ASPLOS 2024
        • SpotServe: Serving generative large language models on preemptible instances
      • EuroSys 2024
        • Orion: Interference-aware, fine-grained GPU sharing for ML applications
      • NSDI 2024
      • NeurIPS 2023
      • SC 2023
        • Interference-aware multiplexing for deep learning in GPU clusters: A middleware approach
      • SoCC 2023
      • SOSP 2023
        • UGache: A unified GPU cache for embedding-based deep learning
      • SIGCOMM 2023
      • HotChips 2023
      • ICML 2023
      • ATC 2023
        • Accelerating Distributed MoE Training and Inference with Lina
        • SmartMoE: Efficiently Training Sparsely-Activated Models ...
        • Beware of Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent
      • OSDI 2023
      • HotOS 2023
      • SIGMOD 2023
      • ISCA 2023
      • MLSys 2023
      • EuroSys 2023
      • NSDI 2023
        • Shepherd: Serving DNNs in the wild
        • Understanding RDMA microarchitecture resources for performance isolation
        • Skyplane: Optimizing transfer cost and throughput using cloud-aware overlays
        • Shockwave: Fair and efficient cluster scheduling for dynamic adaptation in machine learning
      • ASPLOS 2023
        • TPP: Transparent page placement for CXL-enabled tiered-memory
        • EVStore: Storage and caching capabilities for scaling embedding tables in deep recommendation system
        • Lucid: A non-intrusive, scalable and interpretable scheduler for deep learning training jobs
      • SC 2022
      • SoCC 2022
        • ESCHER: Expressive scheduling with ephemeral resources
        • Serving unseen deep learning model with near-optimal configurations: A fast adaptive search approach
      • SIGCOMM 2022
        • Multi-resource interleaving for deep learning training
      • ATC 2022
        • PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training
        • Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual Memory
        • Whale: Efficient Giant Model Training over Heterogeneous GPUs
        • DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient Processing of DNN Service...
        • Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing
        • SOTER: Guarding Black-box Inference for General Neural Networks at the Edge
        • Direct access, high-performance memory disaggregation with DirectCXL
      • OSDI 2022
        • Orca: A distributed serving system for transformer-based generative models
        • Microsecond-scale preemption for concurrent GPU-accelerated DNN inferences
        • Looking beyond GPUs for DNN scheduling on multi-tenant clusters
      • IPDPS 2022
        • DGSF: Disaggregated GPUs for serverless functions
      • EuroSys 2022
        • Slashing the disaggregation tax in heterogeneous data centers with FractOS
      • NSDI 2022
      • SoCC 2021
      • ATC 2021
        • Zico: Efficient GPU memory sharing for concurrent DNN training
      • OSDI 2021
        • Pollux: Co-adaptive cluster scheduling for goodput-optimized deep learning
      • SOSP 2021
        • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
      • EuroSys 2021
        • Take it to the limit: Peak prediction-driven resource overcommitment in datacenters
      • HotOS 2021
        • From cloud computing to sky computing
      • NSDI 2021
      • OSDI 2020
        • A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters
        • HiveD: Sharing a GPU cluster for deep learning with guarantees
      • ATC 2020
        • Serverless in the wild: Characterizing and optimizing the serverless workload
      • EuroSys 2020
      • ASPLOS 2020
      • MLSys 2020
      • SoCC 2020
        • Elastic Parameter Server Load Distribution in Deep Learning Clusters
      • HPDC 2020
        • KubeShare: A framework to manage GPUs as first-class and shared resources in container cloud
      • CLUSTER 2019
      • EuroSys 2019
      • NSDI 2019
      • IWQoS 2019
        • Who limits the resource efficiency of my datacenter: An analysis of Alibaba datacenter traces
      • SIGCOMM 2018
        • Revisiting network support for RDMA
      • OSDI 2018
        • Ray: A distributed framework for emerging AI applications
      • EuroSys 2018
        • Medea: Scheduling of long running applications in shared production clusters
      • ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018
        • GaiaGPU: Sharing GPUs in container clouds
      • SoCC 2017
        • SLAQ: Quality-driven scheduling for distributed machine learning
      • ASPLOS 2017
        • Neurosurgeon: Collaborative intelligence between the cloud and mobile edge
      • NSDI 2017
        • Clipper: A low-latency online prediction serving system
      • CLUSTER 2014
        • Evaluating job packing in warehouse-scale computing
    • Journal
      • IEEE Transactions on Cloud Computing
        • 2021
          • Gemini: Enabling multi-tenant GPU sharing based on kernel burst estimation
      • ACM Computing Surveys
        • 2017
          • GPU virtualization and scheduling methods: A comprehensive survey
      • ACM SIGCOMM Computer Communication Review (CCR)
        • 2021
          • Data-driven Networking Research: models for academic collaboration with industry
        • 2007
          • How to Read a Paper
      • Communications of the ACM
        • 2015
          • Why Google stores billions of lines of code in a single repository
    • Miscellaneous
      • arXiv
        • 2024
          • Efficiently programming large language models using SGLang
        • 2023
          • HexGen: Generative inference of foundation model over heterogeneous decentralized environment
          • High-throughput generative inference of large language models with a single GPU
        • 2022
          • DisaggRec: Architecting disaggregated systems for large-scale personalized recommendation
          • A case for disaggregation of ML data processing
          • Singularity: Planet-scale, preemptive and elastic scheduling of AI workloads
          • Aryl: An elastic cluster scheduler for deep learning
        • 2016
          • Wide & deep learning for recommender systems
          • Training deep nets with sublinear memory cost
      • MSR Technical Report
        • 2011
          • Heuristics for vector bin packing
  • About Myself
    • Academic Profile
    • Personal Blog (in Chinese)
Powered by GitBook
On this page
  • Welcome
  • Changelogs
  • Epilogue
  • License

Was this helpful?

Edit on GitHub

Introduction

Last updated 11 days ago

Was this helpful?

β€œThink different.” β€”β€” Apple Inc.

Hi all, thank you for visiting here ;-)

I am currently a graduate student at HKUST. These are my personal paper reading notes.

Specifically, I have a broad interest in systems (e.g., OSDI, SOSP, NSDI, ATC, EuroSys, SoCC, ASPLOS, MLSys), machine learning (e.g., ICML, ICLR, NeurIPS), and other funny stuff.

Welcome

  1. I'll aperiodically organize some interesting papers that I have read during my leisure and upload their notes to the , which can be read easily on the .

  2. I've organized a list of papers on several topics (e.g., systems for ML) and also categorized the reading notes by conference/journal dates.

  3. If you find a paper that interests you in my reading notes, feel free to and chat with me.

  4. Even if the paper you are interested in is not in my notes, you can also to let me know. I will read it and give you my thoughts if I have time.

  5. Welcome to if you find any typos.

Changelogs

  • 05/2025: Organize the papers of .

  • 03/2025: Organize the papers of , (Fall cycle), , ; update the paper list of .

  • 02/2025: Organize the papers of , .

  • 01/2025: Update the paper list of and ; organize the papers of , , .

  • 12/2024: Briefly organize the papers of (only Spring cycle); organize the papers of , ; update the reading notes of .

  • 09/2024: Organize the papers of .

  • 08/2024: Organize the papers of ; update the reading notes of ; create several new paper lists of , , and .

  • 07/2024: Organize the papers of , , , , , , ; create a new paper list of ; update the paper list of , , and .

Epilogue

License

If it helps, you could star the .

For a better experience, please check out the .

Released under the .

Copyright Β© 2021β€”2025 .

GitHub repository
website
create an issue
create an issue
submit a pull request
HotOS 2025
NSDI 2025
EuroSys 2025
ASPLOS 2025
MLSys 2025
systems for LLMs
HPCA 2025
PPoPP 2025
research skills
systems for diffusion models
HotNets 2024
MLSys 2024
NeurIPS 2024
EuroSys 2025
SoCC 2024
SC 2024
SOSP 2024
SOSP 2024
VLDB 2024
SIGCOMM 2024
diffusion models
language models
deep learning recommendation models
SIGCOMM 2024
ICML 2024
ATC 2024
OSDI 2024
NSDI 2024
CVPR 2024
ISCA 2024
systems for diffusion models
systems for LLMs
systems for DLRMs
resource scheduler
GitHub repository
website
MIT License
Lingyun Yang